On the Smallest Eigenvalue of Grounded Laplacian Matrices

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The smallest eigenvalue of the signless Laplacian

Recently the signless Laplacian matrix of graphs has been intensively investigated. While there are many results about the largest eigenvalue of the signless Laplacian, the properties of its smallest eigenvalue are less well studied. The present paper surveys the known results and presents some new ones about the smallest eigenvalue of the signless Laplacian.

متن کامل

The smallest eigenvalue of Hankel matrices

Let HN = (sn+m), n,m ≤ N denote the Hankel matrix of moments of a positive measure with moments of any order. We study the large N behaviour of the smallest eigenvalue λN of HN . It is proved that λN has exponential decay to zero for any measure with compact support. For general determinate moment problems the decay to 0 of λN can be arbitrarily slow or arbitrarily fast. In the indeterminate ca...

متن کامل

On the Smallest Eigenvalue of General correlated Gaussian Matrices

Abstract—This paper investigates the behaviour of the spectrum of generally correlated Gaussian random matrices whose columns are zero-mean independent vectors but have different correlations, under the specific regime where the number of their columns and that of their rows grow at infinity with the same pace. This work is, in particular, motivated by applications from statistical signal proce...

متن کامل

The third smallest eigenvalue of the Laplacian matrix

Let G be a connected simple graph. The relationship between the third smallest eigenvalue of the Laplacian matrix and the graph structure is explored. For a tree the complete description of the eigenvector corresponding to this eigenvalue is given and some results about the multiplicity of this eigenvalue are given.

متن کامل

Ela the Smallest Signless Laplacian Eigenvalue of Graphs under Perturbation

In this paper, we investigate how the smallest signless Laplacian eigenvalue of a graph behaves when the graph is perturbed by deleting a vertex, subdividing edges or moving edges.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Automatic Control

سال: 2015

ISSN: 0018-9286,1558-2523

DOI: 10.1109/tac.2015.2444191